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INTRODUCTION 

The recent thrust in the study of .elastic wave scattering has been 

highly motivated by its applications in various fields such as seismic 

explorations, nondestructive testing, material property evaluation and 

dynamic stress concentration. An excellent account of history and 
, 

fundamentals of elastic wave motions is given in [l-2]' and a‘comprehensive 

discussion of applications in nondestructive evaluation from a.theoretical 

viewpoint can be found in [3-41. 

The scattering of a single ellipsoidal scatterer in an infinite 

medium is of fundamental importance and is attacked by the method of 

matched asymtotic expansions [S], the direct volume integral formulation [6], 

the surface integral formulations [7], and also, recently, the polarization 

approach [8]. 

It appears that Ma1 and Knopoff [6] were first in presenting a direct 

volume integral formulation where they gave the scattered displacements in 

terms of volume integrals involving the displacements and strains inside 

the scatterer. Not knowing these fields, they used the solution when no 

scatterer was present to.obtain .an approximate solution for a perfect 

sphere. The- same approach was later taken by Gubernatis [9] for an 

ellipsoidal inhomogeneity. These so-lutions are appropriate at longwave 

scattering, ka < 1, where k is wave number and "a" is a typical geometric 

dimension. 

Using the equivalent inclusion method, Eshelby (10,11,12] studied 

the static edastic fields "inside" and "outside" an ell.ipsoidal inclusion 

1 Number in brackets designate References at the end of paper. 



or inhomogeneity embedded in an infinite isotropic elastic medium under 

applied tension. All through this paper, an "inhomogeneity is referred 

to as a region of different elastic moduli and density compared with its 

surrounding matrix and an "inclusionl' is referred to as a region with the 

same elastic moduli and density as its surrounding matrix but include in 

it a distribution of eigenstrains. Eigenstrains are strains that are not 

derived from mechanical loading. As examples we note that thermal strains 

and also the swelling strains due to the presence of moisture are special 

types of eigenstrains. 

The method of equivalent inclusion is a method where the inhomogeneity 

is replaced by an inclusion such that solutions for the two problems are 

exactly the same. the basic concept is sketched in Figure 1. Wheeler 

and Mura [13] first developed but did not apply a complete eigenstrain 

formulation to the dynamic case. The purpose of this study is to extend 

the method of equivalent inclusion to fully develop the equivalence 

conditions and to present a method for complete determination of the 

eigenstrains and/or their derivatives as appropriate. 

The equivalence conditions and the solutions to the scattering of an 

inhomogeneity in terms of eigenstrains and/or their derivatives are first 

developed. Agreement with other approaches is then easily seen. The 

formulation is general and both the inhomogeneity and the host medium 

can be anisotropic. The scattering of an ellipsoidal inhomogeneity in a 

linear elastic isotropic whole space subjected to plane time-harmonic wave 

is studied and the differential and total cross-sections for a uniformly 

distributed eigenstrain are detailed and shown. 

Mr. H.S. Jing and Mr. Y. Paul Hsu assisted in the computer 

programming and graph plotting. Numerical work was conducted by using 

the AMuU-IL 470 computing system and plotting was done on the MING System 

of the Department of Engineering Mechanics, Ohio State University. 
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EQUIVALENCE CONDITIONS 

In this section, we develop the equivalence conditions by requiring 

that the displacement and stress fields obtained in the inclusion problem 

be identical to those for the inhomogeneity problem, Fig l(a) and l(b). 

The Inhomogeneity Problem (Problem I) 

Consider the problem of a single inhomogeneity occupying the region n 

in the infinitely extended region D-a subjected to applied incident wave 

field u(~), Figure 1. 
j 

Let the elastic moduli and the mass density be 

denoted by Cijkn. and P 1 for the inhomogeneity, and by Cijkn. and P for the 

host medium, respectively. 

The governing equations for the displacement field are: 

. . 
C jkrs Ur,sk + AC jkrs Ur,sk = p"j + Ap ii. 

3 

in which we used 

'jk =c jkrs ur,s + AC jkrs ur,s 

Ap = 0 in D-R 

P ' -P in 52 

in D (1) 

(2) 

(3) 

IO in D-G 
AC jkrs = C! - Cjkrs in s2 (4) 

JkrS 

Let the superscripts (i) and (m) denote fields associated with the 

incident wave and the mis-match in mass density and elastic moduli. It is 

clear that 
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- -..... -- ._ . . _. - .- 

= #I 
5 j 

+ ,(m) 
j 

(ml as in the absence of mis-match,u. 
3 

disappears and the total field is 

identical to the incident field. 

The boundary conditions are that (1) the displacements and tractions 

at the intersection of the regions Q and D-Q must be continuous, and (2) 

the characteristics of out-going wave field and that the stresses die out 

at infinity must be observed. 

The Inclusion Problem (Problem II) 

Consider next an infinite elastic solid of homogeneous moduli C ijka 
and density p with distributed eigenstrains, denoted by cf., in a region R, 

II 
such that Q is identical in shape and size to that in Problem I, and 

E* = 0 
ij Ef . 

II 

The total strain field is 

where 

in D-Q 
in Q 

E = 
rs (u +u 

r,s 
&/2 = Ee + E* rs rs 

= c e 
'jk jkrs srs 

(7) 

(8) 

Using Equations (6,7) in the equations of motion, we easily obtain the 

governing equations for the total displacement field as follows: 

C U 
jkrs r,sk =pii.+c jkrs , % k in D 

J (91 
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It is, clear from Equation 

= $1 + u* 
5 j j 

(9) that 

(10) 

where u'! 
J 

is the displacement field due to the presence of E?. and it 
1J 

disappears when s?. vanish. 
17 

The only boundary conditions are those regular 

conditions at infinity and the radiation condition. 

Equivalence Conditions 

For a complete equivalence between Problem I and Problem II, we 

require that the displacement and stress fields in the two problems be 

identical. Hence, for equivalence in stress field, we require, from 

Equation (2) and Equations (7,8), 

C jkrs ur,s + AC C jkrs CU 1111 

For equivalence in displacement fields we require that the Equations (1) 

and (9) be identical, hence 

Ao ;; 
j 

- AC C jkrs E* rs,k II 
(121 

It is clear that Equations (11,12) are automatically satisfied in the region 

D-Q by observing the definitions given in Equations (3,4,6). It is convenient 

to split the RHS of Equations (12) into two parts such that 

C jkrs 
E* (11 
rs,k = -AC jkrs Ur,sk UW 

C * (21 
jkrs crs,k = Ap ii. 

J 

5 
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Employing Equations 

conditions as: 

(11-13) and Equations S,lO) we obtain the equivalence 

AC uCm)(r) + Cjkrs E$'(') = jkrs r,s -AC Lw (r) , jkrs r,s in s2 UW 

Ap tiim)(;, + Cjkrs &?)=- Ao iJ?)(:) in 52 (14b) 

These conditions can be used to determine the eigenstrain distribution that 

is necessary for the equivalence of Problems I and 11 provided that we can 

write u(m) r in terms of the eigenstrains. One such method is given in [15]. 

It is of interest to note that Equations (14a) are identical in form as the 

equivalence conditions in the static case and that only the jth components 

of c =* (2) Cm> 
jkrs , -rs k are needed for determining u. . Further discussion on the 

J 
determination of the eigenstrains will follow in the next section. 
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THE SCATTERING OF AN INHOMOGENEITY 

Instead of finding the solution to the physical problem stated we 

seek the solution to the equivalent inclusion problem. The governing 

equations are Equations (6,7,8,9). Let the incident wave field be plane 

time-harmonic then the time harmonic displacement and eigenstrain fields 

can be written as, for example, 

uj(m)(?,t) = u?)(f) exp (-iwt) 

EGs(?,t) = E;~(?) exp (-id> 

where w is the frequency of the incident wave field and i-i =-1. Using the 

dynamic version of the Betti-Rayleigh reciprocal theorem and suppressing 

the time dependence we obtain the displacement field as: 

urn(?) = urn Ci) (r) - /I 
V 
Ic jkrs gjm(',r' 

or, upon employing Gauss' theorem, 

1 E* rs ,(:I dV , 

urn(+) = urn (i)(,q + I/( cjkrs gjm k(%?) E;$) dv 
V , (16) 

where gjm(?,?l) is the spatial part of the solution to the associated 

Green's function problem for Equation (9). Note that the use of the Green's 

function preserves the characteristics of an outward propagating wave and 

satisfies the boundary condition on stress at infinity. Since there are 

two types of eigenstrains, we write the displacements as 



u,(i') = urn ci)(i') - l// gjm(i,il) Cjkrs c;::;(i) dV 
cl 

- .fI/ gjm kf(i,if) Cjkrs ~$~'(i) dV 
R ' 

(17) 

where Equations (6,15,16) are used. It is clear that only the jth component 

of c E* (2) 
jkrs , rs k are needed to determine the displacements. We can therefore 

view this as a vector quantity, say OTT, where 

Substituting Equation 

J 

(18) in Equation 

(18) 

we obtain the solution form 

given as Equation (2.19) in Reference [8], p. 291, for the time-harmonic 

case. If the Equations (14) are substituted in Equation (17), we find the 

solution form Equation (12) in Reference [6], p. 379, or Equation (2.25) 

in Reference [14], p. 2806. 

The stress field that is arisen from the presence of mis-match or 

equivalently by the presence of eigenstrains can be obtained by using Hooke's 

law and Equations (5, 10, 17) as: 

{y"rf) = - $ 'pqmn Il/[(gjm,n,(i~i') + gjn,m,(i,il)]T-r;(i) dv 

n 

lC l/l (g - 2 pqmn n jm,k'n' + gjn,k'm' 1 c jkrs C(i) dV (19) 

Quantities of interest such as the differential cross section 

dP(w)/dn defined as: [16,14] 



dP(w) _ lim <r2 Iii ui. bq> 

dQ r- <IO> 

can be obtained in terms of the eigenstrains via Equations (17-ZO), 

where I 0 is the incident power, 

I0 =n Ci> ;li> , i u.. 
13 j 

<f(t)> denotes time averaging of a function 

<f(t)> = +; f(t)dt 2 
0 

and 11., ni I. are direction cosines for i and n, respectively. 

The differential dR is the differential element of a solid angle. The 

total cross section is simply 

(20) 

(21) 

In what follows we give examples for the scattering of an isotropic 

smooth inhomogeneity in a linear elastic isotropic infinite medium subjected 

to plane time harmonic incident wave field. 
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LINEAR ELASTIC ISOTROPIC MEDIUM 

For such a medium the spatial part of the Green's function is 

(exp iBR)/R 

+ [(exp iBR)/R - (eq iaR) /RI , jml (221 

where 

2 2 2 2 
R = 1;-cfl, a2 = q = z , 8' = s = 5 

vL VT 

and X, U, v L' vT are the Lame's constants, longitudinal wave speed, transverse 

wave speed, respectively. Before we substitute Equation (22) in Equation (17), 

we expand the unknown quantities associated with the eigenstrains in form 

of a polynomial as [15,17]: 

i7; (i) = A.+Ajk xk + Ajka xk xR + . . . 
J 

~;$l)(i) ='Bij + Bijk xk + Bijkn. xk xR + . . . 

(23) 

(24) 

where A., A. B B ijk' '.. are constants. 
3 Jk' "'f ij' Substituting Equations 

(22,23,24), with IT; defined by Equation (18), we obtain 

u:)(i) = urn(i) - uii)(i) = fmj(i) Aj + fmjk(i) Ajk + . . . 

+F mij (5) Bij + Fmijk(i) Bijk + . . . (25a) 
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where 

and 

4apw2 fmj(G) = + $9 mj - ~,mj 

4apw2 f mjkC') = d2g 6 k mj + 'k,mj - 'k,mj 
. . . 

47rpu2 F 
mij(‘l = - [Aa2 $9, 6ij + 2ll B2 $,i 6mj 

- a $9 mij +b4, 1 mij 

4npw2 F 
mijk(‘) = - lx a2 $k,m "ij + 2lJ 82 $k,i dmj 

- 2lJ JI k,mij + 2lJ 0 k,mij 1 

. . . 

O(r) = I// (exp iBR)/R dV1 
Q 

. . . 

'ka...sCr) n - = [I/ xk xL . . . xs (exp iBR)/R dV1 

$J(?) = [A/ (exp iaR)/R dV' 

Q,(r) = //I xk (exp iaR)/R dV' 
R 

(2331 

WC1 

C2W 

(2W 

(26b) 

(26~) 

(26d) 

(264 
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Jl,,,s(?) = lA/ xk x11 . . . xs (exp iaR)/R dV1 Wf) 

The o- and $-integrals given in Equations (26) are the volume integrals 

associated with the inhomogeneous Helmholtz equation. They can be carried 

out for an ellipsoidal region by expanding (exp ikR)/R in Taylor series 

expansions with respect to ?, for r > r' and with respect to ? for r < r'. 

'Here k can be either a or B. Details are given in Reference [18]. This 

type of expansion for the integrand is particularly useful in determining 

the coefficients of a "polynomial" distribution of "3 and A?‘.. 
1J 

To determine the coefficients A., A. B B 
3 ok' **" jk' jka, *--, we 

substitute Equations (18,23,24,25) in Equations (14) and note that we are 

*Cl) dealing with time-harmonic displacements. Since the ~7 and E.. 

in terms of polynomials we expand the u i"' (5) , up; (2) 
, 

and uifl(?) 

are given 

in Taylor 

series expansions with respect to the coordinate origin, by matching the 

coefficients of terms to the same power of XT, x., X.X., . . . . 
1 

we obtain a 
1J 

set of infinite number of algebraic equations for A., A. B B 
J J k' *" Jk' W' "' 

The scattering cross sections are given in terms of these coefficients by 

way of Equations (17,19,20). 
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EXAMPLES: 

Uniformly Distributed Egenstrains 

Let the region $2 be an ellipsoidal region of 2a1, 2a2 and 2a3 along 

the x, Y, and z-axis, respectivelyi Figure 2. We first expand the integrals 

and their derivatives in Taylor series for r < r' and obtain the Taylor 

series for ujm)(?) from Equations (25). Substituting this series for u 5"' (r) 

and its derivatives in Equations (14) with Equations (23,24) and the Taylor 

series for usi)( we obtain the governing algebraic equations for A., A. 
3 Jk' 

. ..) B N ij' ijk' '*' 
by comparing the order in the power series i.e. xy, x., 1 

x.x., etc. 
iJ 

To save space these equations are not shown here. Once these 

coefficients are determined, we go back to Equations (25) and find the 

scattered displacement field which is um(?) when r + 0. 
3 

By using formulas 

given in [lS] the scattered displacement field is given in terms of a triple 

SUlll. 

In what follows we consider the case for a plane time harmonic wave 

propagating in the +z-direction, i.e. 

uii)(?,t) = u. exp i(az - wt) 

For a given (ka) enough terms must be taken in determining the coefficients 

A's and B's in Equations (23,24) from 

[f] (A1 + [F] {B} = 2; 
mXm mX1 mXm mX1 

[d] (A} + [D] IB) = (El 
mXm mX1 m&n mX1 mX1 

(27) 

where [f], [F] are defined by the Taylor expansion of the f- and F- functions 
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at r = 0, and WI , @I are the average of the symmetric part of [f], [F]. 

Gil The RHS are obtained from the Taylor series expansion for u. and sci) 
3 ij , 

respectively. 

Using Equations (12,17) in [IS] and Equation (25), we find that, for 

(11 the lowest order of a?. and or? or C E* (2) 
13 J jkrs rs , i.e. keeping only the 

constant terms in Equations (23,24), at a distance far away frori the 

ellipsoid: 

up&t) = Lp(G,t) 1 
r+= 

II k n-%-k 9, k n-e-k (-1)"4nala2a3 ala2a3 111R2R3 
n=O ll=O k=O I (2n+3)(2n+l)n! (L/2)!(k/2)!(n-L-k)/21 l 

l ( y [-a'(ia)" Em!ZjAj - Xia3(ia)ncm6kjBkj 

- 2uia3' * (la)" LmLkllj Bkj 
I 

+ =y= [62(Em'j-6mj) Aj - 2uiB3 L 6 B . k mj kJ 

+ 2diB3 II II 11 B. ] (i31n] exp C-i&> mkj kj (28) 

where the repeated subscripts must be summed from 1 to 3. 
Note that Bkj 

is non-dimensional and is homogeneous in (auo) and A. is of dimension 
J 

(Ap l w2 l uo). The first term in the expression, i.e. n = 0, gives the 

following: 

14 



Lp (5) 
s (aa,) u. 

= p G;(e,c$) + ex;riBr H;(e,$) 

where (r,B,$) are spherical coordinates and 

G;OWl = - (a2a3/3alall [ern’ljA3 (‘P/P> 

+ (l-a2/B2) t m B3j + 2 em'lkLj Bij] 

PaI 

Wb) 

H;le,e) = (a2a3/3alal) [ CB/aJ3 (k R. 
mJ - 6mj) “7 CAP/P) 

4 
- 2(6/a) kk Bcm + 2(B/a) 4 emakLjB;j] (29cl 

in which 

A? 
= Aj/(Aou2 uo) (29d) 

Bitj = -Bkj/(iauo) (29e) 

By using Equations (20,27,28) we obtain the differential scattering 

cross section, after manipulation, as 

dP (~1 
dQ =aP(e,+) + (a/B) u’(e,U (30) 

where 

15 



~22(e,~) = (aa,) l H;Iht4 Hf,(eAl CD n l $1 

!L n-R-k R k n-L-k 

cn = Y i c 
n-9. (-ilnlaalln(a2/a$ !a,/a,> %'2'3 

n=O L=O k=O (2n+3)(2n+l) n! (L/2)! (k/2),! (k/2!: (n-L-k)/2! 

C-i)“@ a,)“Ca,/a,l n-L-k 2 k n-R-k 
5 R2 R3 

Dn = 
n=O L=O k=O (2n+3)(2n+l)n!(%/2)!'(k/2)!(n-R-k)/2! - 

The super bar here denotes complex conjugate. The total differential cross- 

section can be easily obtained as 

= (a/B I 3Ca alI 4/ 
c 

Hz "; Dni$ dn . (31) 
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Discussion 

An eigenstrain approach to the scattering of a single ellipsoidal 

inhomogeneity is studied in detail. A complete formulation of the 

equivalence between the inhomogeneity problem and the inclusion problem 

is given while the case Ao=O was given in NASA contractor report #3445 [15]. 

It is shown that this approach is identical to other approaches such as 

the direct volume integral formulation, Refs. [6,8,9]. 

The eigenstrains are expanded as a geometric series and the coefficients 

are determined by the equivalence conditions derived here and also Ref. [19]. 

The scattered displacements and stresses are given in an analytic series 

form in terms of these coefficients. The scattering of an ellipsoidal 

inhomogeneity in an isotropic elastic medium under plane time-harmonic 

incident wave is worked out as an example. The eigenstrains are assumed 

to be uniformly distributed. 

The advantages in using the approach taken is at least three-fold: 

(i) the radiation condition for out-going waves and the continuity con- 

ditions at the interface between the inhomogeneity and the matrix are 

automatically satisfied, (ii) the solution for special inhomogeneity 

geometric shape, such as sphere, cylinder, plate, disk, prolate and oblate 

spheroids, can be easily obtained by setting the appropriate ratios between 

al,a2,a3 in evaluating the volume integrals (181, (iii) with the assistance 

of asymptotic expansion method the solution can be easily modified to 

obtain solutions appropriate for different ranges of wavelengths that are 

of interest. 
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Numerical results and graphical plots for an inhomogeneity of 

spheroidal geometry, Fig. 2, are given in Figs. 3-9, for the case of 

uniformly distributed eigenstrains. A comparison of the results obtained 

with "exact" solution can only be done for simple cases. Such is done 

for the cases of a planar or a spherical geometry. The comparison is 

given in a subsequent report. Finally, it should be mentioned that a' 

generalization of this work for investigating the attenuation and velocity 

factors is being planned. 

18 
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D-n 

C ijkl’ 4 

D-i-2 

C ijkl’ p 

1 

Fig. 1 (a) The inhomogeneity problem, 
(b) The inclusion problem. 



x3 matrix: A, u ; p 
inhomogeneity : i\: P'; p0 

Fig. 2 An ellipsoidal inhomogeneity under incident wave 
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Fig. 7 Convergence of Cn as a function of aal: a /a 2 1 = 2/3, 
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Fig. 5 G(8,4) vs &al: a2/al = 2/3, a3/al = 2/3, 9 = 0, 8 = 0 

G . G = Gm - cm . 
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